On Weak Underpolynomials of Generalized Infrapolynomials

Bruce L. Chalmers
Department of Mathematics, University of California, Riverside, California 92502

Communicated by Joseph L. Walsh
Received October 18, 1970

Let P_{n} denote the class of polynomials $\sum_{i=0}^{n} c_{i} z^{i}$ with complex coefficients considered as mappings of the complex z-plane C_{z} into itself. Let $L=\left\{\mathscr{L}^{i}\right\}_{i m 0}{ }^{\boldsymbol{m}}$ denote a fixed set of $r+1$ linearly independent linear functionals on P_{n}, and let $A=\left(A_{0}, A_{1}, \ldots, A_{r}\right)$ be a fixed $(r+1)$-tuple of complex numbers. Then $P_{n}(A)$ will represent the class of polynomials $p(z)$ in P_{n} such that $\mathscr{L}^{i} p=A_{i}, i=0,1, \ldots, r$. Further, let E denote a compact subset of \mathbf{C}_{z} containing at least $n-r$ points. Following the work of many authors (see, e.g., [3]), we make the following

Definition. $p(z) \in P_{n}(A)$ is called an infropolynomial on E with respect to $P_{n}(A)$ if $p(z)$ has on E no underpolynomials with respect to $P_{n}(A)$; i.e., if there exists no polynomial $q(z)$ in $P_{n}(A)$ such that

$$
\begin{array}{lll}
|q(z)|<|p(z)| & \text { on } & E \cap\{z ; p(z) \neq 0\} \\
q(z)=0 & \text { on } & E \cap\{z ; p(z)=0\} \tag{2}
\end{array}
$$

A polynomial $q(z) \in P_{n}(A)$ such that $q(z) \not \equiv p(z)$ and

$$
|q(z)| \leqslant|p(z)| \text { on } E
$$

is called a weak underpolynomial of $p(z)$ on E with respect to $P_{n}(A)$.
In [3], Zedek obtained the following theorem, extending a result due to Motzkin and Walsh [2], who proved the case $r=0$.

Theorem 1. Suppose $\mathscr{L}^{i}(p)=p^{(n-i)}(0)=(n-i)!c_{n-i}, i=0,1, \ldots, r$ If $p(z) \in P_{n}(A)$ is an infrapolynomial on E with respect to $P_{n}(A)$, then $p(z)$ has no weak underpolynomial on E with respect to $P_{n}(A)$.

Definition. Let $e_{z}{ }^{i}$ denote the linear functional defined on P_{n} by $e_{z}^{i} p=p^{(i)}(z)$. For notational convenience in the sequel, the $(m+1)$-tuple
$\left\{e_{z_{\beta}}^{0}, e_{z_{\beta}}^{1}, \ldots, e_{z_{\beta}}^{m}\right\}$ will be denoted by $\left\{e_{z_{\beta}}^{0}, e_{z_{\beta}}^{0}, \ldots, e_{z_{\beta}}^{0}\right\}$, and in any k-tuple of points $\left(z_{1}, z_{2}, . ., z_{k}\right)$ it will be assumed that if $z_{i}=z_{j}$ then $z_{i+k}=z_{i}$, $0 \leqslant k \leqslant j-i$. If $\left\{\mathscr{L}^{0}, \mathscr{L}^{1}, \ldots, \mathscr{L}^{r}, e_{z_{1}}^{0}, \ldots, e_{z_{n-r}}^{0}\right\}$ forms a linearly independent set in the dual of P_{n} for each $(n-r)$-tuple of points $z_{1}, z_{2}, \ldots, z_{n-r}$ in E, then we will say that E is nonsingular for (L, P_{n}). Otherwise we will say E is singular for $\left(L, P_{n}\right)$.
We will prove the following theorem.
Theorem 2. If E is nonsingular for $\left(L, P_{n}\right)$, and $p(z) \in P_{n}(A)$ is an infrapolynomial on E with respect to $P_{n}(A)$, then $p(z)$ has no weak underpolynomials on E with respect to $P_{n}(A)$. As a partial converse we have that if E is singular for (L, P_{n}) and contains precisely $n-r$ points, then there exists an infrapolynomial $p(z)$ with a weak underpolynomial on E with respect to $P_{n}(A)$.

Example 1. Theorem 1 is a special case of Theorem 2 since, in Theorem 1, E is nonsingular for (L, P_{n}). Indeed, if $p(z) \in P_{n}$ and $\mathscr{L}^{i}(p)=p^{(n-i)}(0)=$ $(n-i)!c_{n-i}=0(i=0,1, \ldots, r)$, then $p(z) \in P_{n-r-1}$. Since $\left\{e_{z_{1}}^{0}, \ldots, e_{z_{n-r}}^{0}\right\}$ is an Hermite system on P_{n-r-1}, we see that $e_{z_{1}}^{0}(p)=0, \ldots, e_{z_{n-r}}^{0}(p)=0$ implies $p(z)=0$. Thus $\left\{\mathscr{L}^{0}, \ldots, \mathscr{L}^{r}, e_{z_{1}}^{0}, \ldots, e_{z_{n-r}}^{0}\right\}$ is a linearly independent set in the dual of P_{n} for any points $z_{1}, z_{2}, \ldots, z_{n-r}$ in E.

It follows from a result due to D. R. Ferguson [1, p. 20] that if $\mathscr{L}^{i}=e_{0}^{j_{i}^{i}}$ $(i=0,1, \ldots, r)$, the choice $j_{i}=n-i(i=0,1, \ldots, r)$, as in the case of Theorem 1, is the only configuration such that every E is nonsingular.

Example 2. Suppose (i) $\mathscr{L}^{i}(p)=p^{(n-i)}(0)=c_{n-i}, i=0,1, \ldots, k-1$, (ii) $\mathscr{L}^{i}(p)=p^{(i-k)}(0)=c_{i-k}, i=k, k+1, \ldots, r$, and (iii) $0 \notin E$. Then E is nonsingular for $\left(L, P_{n}\right)$. This is clear, since $c_{n-i}=0(i=0,1, \ldots, k-1)$ and $c_{i-k}=0(i=k, k+1, \ldots, r)$ imply $p(z) \in z^{r-k+1} P_{n-r-1}$, and, thus, if $e_{z_{1}}^{0}(p)=0, \ldots, e_{z_{n-r}}^{0}(p)=0$, where no $z_{\alpha}=0$, then $p(z) \equiv 0 .\left(e_{z_{1}}^{0}, \ldots, e_{z_{n-r}}^{0}\right.$ is an Hermite system on the space $z^{r-k+1} P_{n-r-1}$ which is a Haar space on E, since $0 \notin E$.)

It is also a consequence of Ferguson's result mentioned above that if $\mathscr{L}^{i}=e_{0}^{j_{i}}(i=0,1, \ldots, r)$, and E is nonsingular for $\left(L, P_{n}\right)$ whenever $0 \notin E$, then the j_{i} must be as in Example 2.

Suppose $\mathscr{L}^{i}=e_{w_{i}}^{j_{i}}(i=0,1, \ldots, r)$ and the set $N_{k}=\left\{j_{i} ; j_{i} \geqslant n-k\right\}$ contains no more than $k+1$ elements, $k=0,1, \ldots, r$. Then from another result of Ferguson [1, pp. 4, 8], we have that the set of $(n-r)$-tuples $\left(z_{1}, z_{2}, \ldots, z_{n-r}\right)$ such that $\left\{\mathscr{L}^{0}, \ldots, \mathscr{L}^{r}, e_{z_{1}}^{0}, \ldots, e_{z_{n-}}^{0}\right\}$ is a linearly dependent set in the dual of P_{n}, is a closed, nowhere dense subset of the complex ($n-r$)-space.

Example 3. Let $n=3, r=1, \mathscr{L}^{0}=e_{0}{ }^{3}, \mathscr{L}^{1}=e_{0}{ }^{1}, A_{0}=3!$, and
$A_{1}=0$. Then $P_{3}(A)=\left\{z^{3}+a z^{2}+b\right\}$. First, let $E=\{-k, k\}$ for some $k>0$. Then E is singular for $\left(L, P_{3}\right)$, for, if $p(z) \in P_{3}$ and $\mathscr{L}^{0} p=\mathscr{L}^{1} p=0$, then $p(z)=c z^{2}+d$ which vanishes throughout E if $d=-c k^{2}$. Hence, according to the second part of Theorem 2, there exists an infrapolynomial with a weak underpolynomial on E with respect to $P_{3}(A)$.

Secondly, let $E=\{-k, m\}$, where $m>0, k>0, m \neq k$. Then, by the above argument, E is nonsingular for (L, P_{3}).

Example 4. Let $n=3, r=1, \mathscr{L}^{0}=2 e_{0}{ }^{3}-e_{0}{ }^{1}, \mathscr{L}^{1}=e_{0}{ }^{0}, A_{0}=1$, $A_{1}=2$, and $E=\{1,2,3\}$. Then $P_{3}(A)=a z^{3}+b z^{2}+(12 a-1) z+2$. Further, E is nonsingular for (L, P_{3}). For, if $\mathscr{L}^{0} p=\mathscr{L}^{1} p=0$, then $p(z)=$ $a z^{3}+b z^{2}+12 a z$. If a were $\neq 0$, the product of the nonzero zeros of $p(z)$ would be 12 . But no two points of E have 12 as their product.
We now adapt the method of [2] and [3] to obtain
Proof of Theorem 2. Suppose that $p(z) \in P_{n}(A)$ has on E a weak underpolynomial $r(z)$ with respect to $P_{n}(A)$, where E is nonsingular for (L, P_{n}). We will demonstrate the existence on E of an underpolynomial $q(z)$ with respect to $P_{n}(A)$. Let $m(z)=\frac{1}{2}[r(z)+p(z)]$. Then $m(z) \in P_{n}(A)$, and, clearly, for each z in E, either $|m(z)|<|p(z)|$ or $m(z)=p(z)$. Let $m(z)=m_{1}(z) f(z)$, and $p(z)=p_{1}(z) f(z)$, where $f(z)$ is the k-th degree monic polynomial whose zeros $z_{1}, z_{2}, \ldots, z_{k}$ are precisely the common zeros of $m(z)$ and $p(z)$ in E, multiple zeros being repeated.

Consider $m(z)-p(z)$. We have $\mathscr{L}^{i}(m-p)=0(i=0,1, \ldots, r)$, and, further, $e_{z_{1}}^{0}(m-p)=0, \ldots, e_{z_{k}}^{0}(m-p)=0$. Hence, if $S=\left\{w_{1}, \ldots, w_{t}\right\}$ is the subset of E on which $m(z)=p(z) \neq 0$, and, thus, where $m_{1}(z)=p_{1}(z) \neq 0$, then $0 \leqslant t \leqslant n-r-k-1$, by our hypothesis that E is nonsingular for (L, P_{n}).
From this hypothesis we also obtain the existence of an $L^{*}(z) \in P_{n}$ such that $\mathscr{L}^{i}\left(L^{*}\right)=0 \quad(i=0,1, \ldots, r), \quad e_{z_{1}}^{0}\left(L^{*}\right)=0, \ldots, e_{z_{k}}^{0}\left(L^{*}\right)=0, \quad$ and $\quad L^{*}(z)=$ $p_{1}(z) f(z)=m_{1}(z) f(z)$ for all $z \in S$. Let $L(z)=L^{*}(z) / f(z)$.

Since $\left|m_{1}(z)-L(z)\right|=0<\left|p_{1}(z)\right|$ for $z \in S$, the same inequality holds for some open neighborhood U of S. Hence for all $e, 0<e<1$, $\left|m_{1}(z)-e L(z)\right|=\left|e\left[m_{1}(z)-L(z)\right]+(1-e) m_{1}(z)\right|<\left|p_{1}(z)\right|$ for $z \in U$.
Next, since $\left|m_{1}(z)\right|<\left|p_{1}(z)\right|$ for $z \in E-S$, we have that $\left|m_{1}(z)\right|<\left|p_{1}(z)\right|$ on the compact set $E-U$. Thus, for e sufficiently small,

$$
\left|m_{1}(z)-e L(z)\right|<\left|p_{1}(z)\right| \quad \text { for } \quad z \in E-U
$$

We conclude that $\left|m_{1}(z)-e L(z)\right|<\left|p_{1}(z)\right|$ on E if e is sufficiently small. Hence $\left|m(z)-e L^{*}(z)\right|<|p(z)|$ on $E \cap \sim\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}=E \cap\{z ; p(z) \neq 0\}$ for e sufficiently small, and $m(z)-e L^{*}(z)=0$ on $E \cap\{z ; p(z)=0\}$. We must still check that $m(z)-e L^{*}(z) \in P_{n}(A)$, but this holds since $\mathscr{L}^{i}\left(L^{*}\right)=0$ $(i=0,1, \ldots, r)$.

For the partial converse, assume that $p(z)$ is an element of $P_{n}(A)$ of smallest supremum norm on E. Then $p(z)$ is an infrapolynomial on E with respect to (L, P_{n}). Moreover, since E is singular for $\left(L, P_{n}\right)$, and contains precisely $n-r$ points, $\left\{z_{\alpha}\right\}_{\alpha=1}^{n-r}$, there exists an $\epsilon(z) \in P_{n}, \epsilon(z) \not \equiv 0$, such that $\mathscr{L}^{i}(\epsilon)=0$, $i=0,1, \ldots, r$, and $\epsilon\left(z_{\alpha}\right)=0(\alpha=1,2, \ldots, n-r)$. Hence, $p(z)+\epsilon(z)$ is a weak underpolynomial of $p(z)$ on E with respect to $P_{n}(A)$.

References

1. D. R. Ferguson, The question of uniqueness for G. D. Birkhoff interpolation problems, J. Approximation Theory 2 (1969), 1-28.
2. T. S. Motzkin and J. L. Walsh, Underpolynomials and infrapolynomials, Illinois J. Math. 1 (1957), 406-426.
3. M. Zedek, On the definition of restricted infrapolynomials, J. Approximation Theory 1 (1968), 251-254.
