JOURNAL OF APPROXIMATION THEORY 7, 391-394 (1973)

On Weak Underpolynomials of Generalized Infrapolynomials

BRUCE L. CHALMERS

Department of Mathematics, University of California, Riverside, California 92502 Communicated by Joseph L. Walsh

Received October 18, 1970

Let P_n denote the class of polynomials $\sum_{i=0}^{n} c_i z^i$ with complex coefficients considered as mappings of the complex z-plane C_z into itself. Let $L = \{\mathscr{L}^i\}_{i=0}^r$ denote a fixed set of r + 1 linearly independent linear functionals on P_n , and let $A = (A_0, A_1, ..., A_r)$ be a fixed (r + 1)-tuple of complex numbers. Then $P_n(A)$ will represent the class of polynomials p(z) in P_n such that $\mathscr{L}^i p = A_i$, i = 0, 1, ..., r. Further, let E denote a compact subset of C_z containing at least n - r points. Following the work of many authors (see, e.g., [3]), we make the following

DEFINITION. $p(z) \in P_n(A)$ is called an infropolynomial on E with respect to $P_n(A)$ if p(z) has on E no underpolynomials with respect to $P_n(A)$; i.e., if there exists no polynomial q(z) in $P_n(A)$ such that

$$|q(z)| < |p(z)|$$
 on $E \cap \{z; p(z) \neq 0\},$ (1)

$$q(z) = 0$$
 on $E \cap \{z; p(z) = 0\}$. (2)

A polynomial $q(z) \in P_n(A)$ such that $q(z) \neq p(z)$ and

$$|q(z)| \leq |p(z)|$$
 on E

is called a weak underpolynomial of p(z) on E with respect to $P_n(A)$.

In [3], Zedek obtained the following theorem, extending a result due to Motzkin and Walsh [2], who proved the case r = 0.

THEOREM 1. Suppose $\mathscr{L}^{i}(p) = p^{(n-i)}(0) = (n-i)! c_{n-i}$, i = 0, 1, ..., r. If $p(z) \in P_n(A)$ is an infrapolynomial on E with respect to $P_n(A)$, then p(z) has no weak underpolynomial on E with respect to $P_n(A)$.

DEFINITION. Let e_z^i denote the linear functional defined on P_n by $e_z^i p = p^{(i)}(z)$. For notational convenience in the sequel, the (m + 1)-tuple

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved. $\{e_{z_{\beta}}^{0}, e_{z_{\beta}}^{1}, ..., e_{z_{\beta}}^{m}\}$ will be denoted by $\{e_{z_{\beta}}^{0}, e_{z_{\beta}}^{0}, ..., e_{z_{\beta}}^{0}\}$, and in any k-tuple of points $(z_{1}, z_{2}, ..., z_{k})$ it will be assumed that if $z_{i} = z_{j}$ then $z_{i+k} = z_{i}$, $0 \leq k \leq j-i$. If $\{\mathscr{L}^{0}, \mathscr{L}^{1}, ..., \mathscr{L}^{r}, e_{z_{1}}^{0}, ..., e_{z_{n-r}}^{0}\}$ forms a linearly independent set in the dual of P_{n} for each (n-r)-tuple of points $z_{1}, z_{2}, ..., z_{n-r}$ in E, then we will say that E is nonsingular for (L, P_{n}) . Otherwise we will say E is singular for (L, P_{n}) .

We will prove the following theorem.

THEOREM 2. If E is nonsingular for (L, P_n) , and $p(z) \in P_n(A)$ is an infrapolynomial on E with respect to $P_n(A)$, then p(z) has no weak underpolynomials on E with respect to $P_n(A)$. As a partial converse we have that if E is singular for (L, P_n) and contains precisely n - r points, then there exists an infrapolynomial p(z) with a weak underpolynomial on E with respect to $P_n(A)$.

EXAMPLE 1. Theorem 1 is a special case of Theorem 2 since, in Theorem 1, *E* is nonsingular for (L, P_n) . Indeed, if $p(z) \in P_n$ and $\mathscr{L}^i(p) = p^{(n-i)}(0) = (n-i)! c_{n-i} = 0 (i = 0, 1, ..., r)$, then $p(z) \in P_{n-r-1}$. Since $\{e_{z_1}^0, ..., e_{z_{n-r}}^0\}$ is an Hermite system on P_{n-r-1} , we see that $e_{z_1}^0(p) = 0, ..., e_{z_{n-r}}^0(p) = 0$ implies p(z) = 0. Thus $\{\mathscr{L}^0, ..., \mathscr{L}^r, e_{z_1}^0, ..., e_{z_{n-r}}^0\}$ is a linearly independent set in the dual of P_n for any points $z_1, z_2, ..., z_{n-r}$ in *E*.

It follows from a result due to D. R. Ferguson [1, p. 20] that if $\mathscr{L}^i = e_{0i}^{j_i}$ (*i* = 0, 1,..., *r*), the choice $j_i = n - i$ (*i* = 0, 1,..., *r*), as in the case of Theorem 1, is the only configuration such that every *E* is nonsingular.

EXAMPLE 2. Suppose (i) $\mathscr{L}^{i}(p) = p^{(n-i)}(0) = c_{n-i}$, i = 0, 1, ..., k - 1, (ii) $\mathscr{L}^{i}(p) = p^{(i-k)}(0) = c_{i-k}$, i = k, k + 1, ..., r, and (iii) $0 \notin E$. Then E is nonsingular for (L, P_n) . This is clear, since $c_{n-i} = 0$ (i = 0, 1, ..., k - 1) and $c_{i-k} = 0$ (i = k, k + 1, ..., r) imply $p(z) \in z^{r-k+1}P_{n-r-1}$, and, thus, if $e_{z_1}^0(p) = 0, ..., e_{z_{n-r}}^0(p) = 0$, where no $z_{\alpha} = 0$, then $p(z) \equiv 0$. $(e_{z_1}^0, ..., e_{z_{n-r}}^0$ is an Hermite system on the space $z^{r-k+1}P_{n-r-1}$ which is a Haar space on E, since $0 \notin E$.)

It is also a consequence of Ferguson's result mentioned above that if $\mathscr{L}^i = e_0^{j_i}$ (i = 0, 1, ..., r), and E is nonsingular for (L, P_n) whenever $0 \notin E$, then the j_i must be as in Example 2.

Suppose $\mathscr{L}^i = e_{w_i}^{j_i}$ (i = 0, 1, ..., r) and the set $N_k = \{j_i; j_i \ge n - k\}$ contains no more than k + 1 elements, k = 0, 1, ..., r. Then from another result of Ferguson [1, pp. 4, 8], we have that the set of (n - r)-tuples $(z_1, z_2, ..., z_{n-r})$ such that $\{\mathscr{L}^0, ..., \mathscr{L}^r, e_{z_1}^0, ..., e_{z_{n-r}}^0\}$ is a linearly dependent set in the dual of P_n , is a closed, nowhere dense subset of the complex (n - r)-space.

EXAMPLE 3. Let n = 3, r = 1, $\mathcal{L}^0 = e_0^3$, $\mathcal{L}^1 = e_0^1$, $A_0 = 3!$, and

 $A_1 = 0$. Then $P_3(A) = \{z^3 + az^2 + b\}$. First, let $E = \{-k, k\}$ for some k > 0. Then E is singular for (L, P_3) , for, if $p(z) \in P_3$ and $\mathscr{L}^0 p = \mathscr{L}^1 p = 0$, then $p(z) = cz^2 + d$ which vanishes throughout E if $d = -ck^2$. Hence, according to the second part of Theorem 2, there exists an infrapolynomial with a weak underpolynomial on E with respect to $P_3(A)$.

Secondly, let $E = \{-k, m\}$, where m > 0, k > 0, $m \neq k$. Then, by the above argument, E is nonsingular for (L, P_3) .

EXAMPLE 4. Let n = 3, r = 1, $\mathscr{L}^0 = 2e_0^3 - e_0^1$, $\mathscr{L}^1 = e_0^0$, $A_0 = 1$, $A_1 = 2$, and $E = \{1, 2, 3\}$. Then $P_3(A) = az^3 + bz^2 + (12a - 1)z + 2$. Further, E is nonsingular for (L, P_3) . For, if $\mathscr{L}^0 p = \mathscr{L}^1 p = 0$, then $p(z) = az^3 + bz^2 + 12az$. If a were $\neq 0$, the product of the nonzero zeros of p(z) would be 12. But no two points of E have 12 as their product.

We now adapt the method of [2] and [3] to obtain

Proof of Theorem 2. Suppose that $p(z) \in P_n(A)$ has on E a weak underpolynomial r(z) with respect to $P_n(A)$, where E is nonsingular for (L, P_n) . We will demonstrate the existence on E of an underpolynomial q(z) with respect to $P_n(A)$. Let $m(z) = \frac{1}{2}[r(z) + p(z)]$. Then $m(z) \in P_n(A)$, and, clearly, for each z in E, either |m(z)| < |p(z)| or m(z) = p(z). Let $m(z) = m_1(z) f(z)$, and $p(z) = p_1(z) f(z)$, where f(z) is the k-th degree monic polynomial whose zeros $z_1, z_2, ..., z_k$ are precisely the common zeros of m(z) and p(z) in E, multiple zeros being repeated.

Consider m(z) - p(z). We have $\mathscr{L}^i(m-p) = 0$ (i = 0, 1, ..., r), and, further, $e_{z_1}^0(m-p) = 0, ..., e_{z_k}^0(m-p) = 0$. Hence, if $S = \{w_1, ..., w_t\}$ is the subset of E on which $m(z) = p(z) \neq 0$, and, thus, where $m_1(z) = p_1(z) \neq 0$, then $0 \leq t \leq n-r-k-1$, by our hypothesis that E is nonsingular for (L, P_n) .

From this hypothesis we also obtain the existence of an $L^*(z) \in P_n$ such that $\mathscr{L}^i(L^*) = 0$ (i = 0, 1, ..., r), $e_{z_1}^0(L^*) = 0, ..., e_{z_k}^0(L^*) = 0$, and $L^*(z) = p_1(z)f(z) = m_1(z)f(z)$ for all $z \in S$. Let $L(z) = L^*(z)/f(z)$.

Since $|m_1(z) - L(z)| = 0 < |p_1(z)|$ for $z \in S$, the same inequality holds for some open neighborhood U of S. Hence for all e, 0 < e < 1, $|m_1(z) - eL(z)| = |e[m_1(z) - L(z)] + (1 - e)m_1(z)| < |p_1(z)|$ for $z \in U$.

Next, since $|m_1(z)| < |p_1(z)|$ for $z \in E - S$, we have that $|m_1(z)| < |p_1(z)|$ on the compact set E - U. Thus, for *e* sufficiently small,

$$|m_1(z) - eL(z)| < |p_1(z)|$$
 for $z \in E - U$.

We conclude that $|m_1(z) - eL(z)| < |p_1(z)|$ on E if e is sufficiently small. Hence $|m(z) - eL^*(z)| < |p(z)|$ on $E \cap \sim \{z_1, z_2, ..., z_k\} = E \cap \{z; p(z) \neq 0\}$ for e sufficiently small, and $m(z) - eL^*(z) = 0$ on $E \cap \{z; p(z) = 0\}$. We must still check that $m(z) - eL^*(z) \in P_n(A)$, but this holds since $\mathcal{L}^i(L^*) = 0$ (i = 0, 1, ..., r).

CHALMERS

For the partial converse, assume that p(z) is an element of $P_n(A)$ of smallest supremum norm on E. Then p(z) is an infrapolynomial on E with respect to (L, P_n) . Moreover, since E is singular for (L, P_n) , and contains precisely n - r points, $\{z_{\alpha}\}_{\alpha=1}^{n-r}$, there exists an $\epsilon(z) \in P_n$, $\epsilon(z) \neq 0$, such that $\mathcal{L}^i(\epsilon) = 0$, i = 0, 1, ..., r, and $\epsilon(z_{\alpha}) = 0$ ($\alpha = 1, 2, ..., n - r$). Hence, $p(z) + \epsilon(z)$ is a weak underpolynomial of p(z) on E with respect to $P_n(A)$.

References

- 1. D. R. FERGUSON, The question of uniqueness for G. D. Birkhoff interpolation problems, J. Approximation Theory 2 (1969), 1-28.
- 2. T. S. MOTZKIN AND J. L. WALSH, Underpolynomials and infrapolynomials, *Illinois J. Math.* 1 (1957), 406-426.
- 3. M. ZEDEK, On the definition of restricted infrapolynomials, J. Approximation Theory 1 (1968), 251-254.