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Let Pn denote the class of polynomials L::=o C;Zi with complex coefficients
considered as mappings of the complex z-plane C. into itself. Let L = {'pi}[.o
denote a fixed set of r + 1 linearly independent linear functionals on Pn ,

and let A = (Ao , A l , ... , Ar) be a fixed (r + I)-tuple of complex numbers.
Then Pn(A) will represent the class of polynomials p(z) in Pn such that
.Pip = Ai' i = 0, 1,..., r. Further, let E denote a compact subset of C.
containing at least n - r points. Following the work of many authors
(see, e.g., [3]), we make the following

DEFINITION. p(z) E Pn(A) is called an infropolynomial on E with respect
to PiA) if p(z) has on E no underpolynomials with respect to PnCA); i.e.,
if there exists no polynomial q(z) in Pn(A) such that

Iq(z)1 < Ip(z)1

q(z) = 0

on

on

En {z;p(z) =1= OJ,

En {z;p(z) = OJ.

(1)

(2)

A polynomial q(z) E Pn(A) such that q(z) =1= p(z) and

I q(z)I ~ Ip(z)j on E

is called a weak underpolynomial of p(z) on E with respect to PnCA).
In [3], Zedek obtained the following theorem, extending a result due to

Motzkin and Walsh [2], who proved the case r = O.

THEOREM 1. Suppose !£,i(p) = pln-il(O) = (n - i)! Cn-i , i = 0, 1,..., r. If
p(z) E P,,(A) is an injrapolynomial on E with respect to Pn(A), then p(z) has
no weak underpolynomial on E with respect to Pn(A).

DEFINITION. Let e.; denote the linear functional defined on Pn by
e.ip = p(i)(z). For notational convenience in the sequel, the (m + I)-tuple
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{e~/l ' e~/l ,... , e;;} will be denoted by {e~/l ' e~/l ,... , e~/l}' and in any k-tuple of
points (Zl' Z2 , •. , Zk) it will be assumed that if Zi = Zj then Zi+k = Zi,
o~ k ~ j - i. If {.po, 'pI, ... , 'pr, e? ,... , e~ } forms a linearly independent

1 ft-,.

set in the dual of Pn for each (n - r)-tuple of points Zl , Z2 ,... , Zn-r in E, then
we will say that E is nonsingular for (L, Pn). Otherwise we will say E is
singular for (L, Pn)'

We will prove the following theorem.

THEOREM 2. If E is nonsingular for (L, Pn), and p(z) E Pn(A) is an infra­
polynomial on E with respect to Pn(A), then p(z) has no weak underpolynomials
on E with respect to Pn(A). As a partial converse we have that if E is singular
for (L, Pn) and contains precisely n - r points, then there exists an infra­
polynomial p(z) with a weak underpolynomial on E with respect to Pn(A).

EXAMPLE I. Theorem 1is a special case of Theorem 2 since, in Theorem 1,
E is nonsingular for (L, Pn). Indeed, if p(z) E Pn and 'pi(p) = p(n-i)(O) =
(n - i)! Cn-i = O(i = 0, 1,... , r), then p(z) E Pn- r- 1 . Since {e? ,..., e~ } is

1 n-r

an Hermite system on Pn- r- 1 , we see that e~ (p) = 0,... , e? (p) = 0
1 n-r

implies p(z) = O. Thus {.po,... , 'p r , e~ ,... , e~ } is a linearly independent set
1 f'l-r

in the dual of Pn for any points Zl , Z2 ,..., Zn-r in E.
It follows from a result due to D. R. Ferguson [1, p. 20] that if 'pi = e~i

(i = 0, 1,... , r), the choice ji = n - i (i = 0,1,... , r), as in the case of
Theorem 1, is the only configuration such that every E is nonsingular.

EXAMPLE 2. Suppose (i) 'pi(p) = p(n-il(O) = Cn-i' i = 0, 1,... , k - I,
(ii) 'pi(p) = p(i-k)(O) = Ci-k' i = k, k + 1,... , r, and (iii) O¢ E. Then E is
nonsingular for (L, Pn ). This is clear, since Cn - i = 0 (i = 0, 1,... , k - 1) and
Ci_k = 0 (i = k, k + 1,... , r) imply p(z) E zr-k+lPn_r_1 , and, thus, if
e~ (p) = 0, ... , e~ (p) = 0, where no Zrx = 0, then p(z) == O. (e~ ,... , e? is

1 n-r 1 n-r
an Hermite system on the space zr-k+1Pn_r_1 which is a Haar space on E,
since 0 ¢: E.)

It is also a consequence of Ferguson's result mentioned above that if
'pi = e~i (i = 0, 1,... , r), and E is nonsingular for (L, Pn) whenever 0 ¢: E,
then the ji must be as in Example 2.

Suppose 'pi = e~i (i = 0, 1,... , r) and the set N k = Ui ;ji ~ n - k}
contains no more th~n k + 1 elements, k = 0, 1,... , r. Then from another
result of Ferguson [1, pp. 4, 8], we have that the set of (n - r)-tuples
(Zl , Z2 ,..., zn-r) such that {.po,... , 'pr, e~ ,... , e~ } is a linearly dependent

1 1&-"
set in the dual of Pn, is a closed, nowhere dense subset of the complex
(n - r)-space.

EXAMPLE 3. Let n = 3, r = 1, .po = e0
3, 'pI = eo!' Ao = 3!, and
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A1 = O. Then Ps(A) = {ZS + az2 + b}. First, let E = {-k, k} for some
k > O. Then E is singular for (L, Ps), for, if p(z) E Ps and !l'0p = !l'lp = 0,
then p(z) = cz2+ d which vanishes throughout E if d = -ck2. Hence,
according to the second part of Theorem 2, there exists an infrapolynomial
with a weak underpolynomial on E with respect to PseA).

Secondly, let E = {-k, m}, where m > 0, k > 0, m =1= k. Then, by the
above argument, E is nonsingular for (L, Ps).

EXAMPLE 4. Let n = 3, r = 1, !l'0 = 2eos - el, !l'1 = eoo, Ao = 1,
A1 = 2, and E = {1, 2, 3}. Then Ps(A) = azs + bz2+ (120 - 1) z + 2.
Further, E is nonsingular for (L, Ps). For, if !l'0p = !l'lp = 0, then p(z) =
azs + bz2+ 12az. If a were =1=0, the product of the nonzero zeros of p(z)
would be 12. But no two points of E have 12 as their product.

We now adapt the method of [2] and [3] to obtain

Proof of Theorem 2. Suppose that p(z) E Pn(A) has on E a weak under­
polynomial r(z) with respect to Pn(A), where E is nonsingular for (L, Pn).
We will demonstrate the existence on E of an underpolynomial q(z) with
respect to Pn(A). Let m(z) = ![r(z) + p(z)]. Then m(z) E PiA), and, clearly,
for each z in E, either I m(z) I < Ip(z) I or m(z) = p(z). Let m(z) = m1(z)f(z),
and p(z) = P1(z)f(z), where fez) is the k-th degree monic polynomial whose
zeros Zl' Z2 ,... , Zk are precisely the common zeros of m(z) and p(z) in E,
multiple zeros being repeated.

Consider m(z) - p(z). We have !l'i(m - p) = 0 (i = 0, 1, , r), and,
further, e~ (m - p) = 0,..., e~ (m - p) = O. Hence, if S = {W1 , , Wt} is the

1 k

subset of E on which m(z) = p(z) =1= 0, and, thus, where m1(z) = P1(Z) =1= 0,
then 0 ~ t ~ n - r - k - 1, by our hypothesis that E is nonsingular for
(L, Pn).

From this hypothesis we also obtain the existence of an L *(z) E Pn such that
!l'i(L*) = 0 (i = 0, 1,..., r), e~l(L*) = 0, ..., e~k(L*) = 0, and L*(z) =
P1(z)f(z) = m1(z)f(z) for all z E S. Let L(z) = L*(z)/f(z).

Since I m1(z) - L(z)1= 0 < IP1(Z) I for z E S, the same inequality
holds for some open neighborhood U of S. Hence for all e, 0 < e < 1,
Im1(z) - eL(z) I = I e[m1(z) - L(z)] + (l - e) m1(z) I < IP1(Z)\ for z E U.

Next, since I m1(z)j < IP1(z)1 for Z E E - S, we have that I m1(z)I < IP1(Z)j
on the compact set E - U. Thus, for e sufficiently small,

I ml(z) - eL(z)I < Ih(z)1 for z E E - U.

We conclude that Im1(z) - eL(z) I < IP1(z)1 on E if e is sufficiently small.
Hence I m(z) - eL*(z) 1 < 1p(z)! on E n --"{Zl , Z2 ,... , Zk} = En {z; p(z) =I=- O}
for e sufficiently small, and m(z) - eL*(z) = 0 on En {z;p(z) = O}. We
must still check that m(z) - eL*(z) E Pn(A), but this holds since !l'i(L*) = 0
(i = 0, 1,..., r).
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For the partial converse, assume that p(z) is an element of PnCA) ofsmallest
supremum norm on E. Then p(z) is an infrapolynomial on E with respect to
(L, Pn). Moreover, since E is singular for (L, Pn), and contains precisely
n - r points, {z",}::; , there exists an E(Z) E Pn , E(Z) =1= 0, such that 'pi(E) = 0,
i = 0, 1,..., r, and E(Z",) = 0 (ex = 1,2,..., n - r). Hence, p(z) + feZ) is a
weak underpolynomial of p(z) on E with respect to Pn(A). 0
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